Journal Articles


  1. Akhondzadeh Sh., Kang M., Sills R. B., Ramesh K. T., and Cai W.,   Direct comparison between experiments and dislocation dynamics simulations of high rate deformation of single crystal copper, Acta Mater., In-Press. [link]
  2. Zhang Y. and Sills R. B., Strengthening via Orowan Looping of Misfitting Plate-like precipitates, J. Mech. Phys. Sol., Vol. 173, 105234 (2023) [link].
  3. Noell P. J., Sills R. B., Benzerga A. A., Boyce B. L., Void Nucleation During Ductile Rupture of Metals: A Review, Prog. Mater. Sci., Vol. 135, 101085 (2023) [link].
  4. Zhou X. W., Foster M. E., and Sills R. B., Enabling molecular dynamics simulations of helium bubble formation in tritium-containing austenitic stainless steels: An Fe-Ni-Cr-H-He potential. J. Nuc. Mater. Vol. 575 (2023). [link]
  5. Deka N., Alleman C., Medlin D. L., and Sills R. B., Energy and stochasticity: the yin and yang of dislocation patterning. Mater. Res. Lett. Vol. 11, No. 4 (2023). [link]


  1. Nowak C., Sills R. B., Ronevich J. A., San Marchi C. W., and Zhou X. W., Atomistic simulations of hydrogen distribution in Fe–C steels. Int. J. Hydrog. Energy, Vol. 47, No. 76 (2022). [link]
  2. Zhou X. W., Skelton R., Sills R. B., and San Marchi C., Slip transmission and voiding during slip band intersections in Fe70Ni10Cr20 stainless steel. Scripta Mater. Vol 220, 114925 (2022). [link]
  3. Zhou X. W., Foster M. E., and Sills R. B. Molecular dynamics studies of helium bubble effects on grain boundary fracture vulnerabilities in an Fe70Ni11Cr19–1%H austenitic stainless steel. J. Nuc. Mater. Vol. 565 (2022). [link]
  4. Noell P. J., Deka N., Sills R. B., and Boyce B. L. Identifying the microstructural features associated with void nucleation during elevated-temperature deformation of copper, Fatigue Fract. Eng. Mater. Struct., In-Press (2022). [link]
  5. Sills R. B and Medlin D. L. Semi-automated, Object-based Tomography of Dislocation Structures, Microsc. Microanal., In-Press. [link]
  6. Deka N. and Sills R. B. Monte Carlo-discrete dislocation dynamics: A technique for studying the formation and evolution of dislocation structures, Modell. Simul. Mater. Sci. Eng., Vol. 30 (2022) (Invited article). [link]
  7. Zhou X. W., Nowak C., Skelton R. S., Foster M. E., Ronevich J. A., San Marchi C., and Sills R. B., An Fe–Ni–Cr–H interatomic potential and predictions of hydrogen-affected stacking fault energies in austenitic stainless steels, Int. J. Hydrogen Energy, Vol. 47, 651-665 [link].
  8. Sills R. B., Foster M. E., and Zhou X., Line tension induced character angle dependence of dislocation mobility in FCC alloys, Scripta Mater., 208, 114340 (2022) [link].


  1. Zhao Q. Q., Boyce B. L., and Sills R. B.Micromechanics of Void Nucleation and Early Growth at Incoherent Precipitates: Lattice-trapped and Dislocation-mediated Delamination Modes, Crystals, 11, 45 (Invited article) (2021) [link].
  2. Zhou X.W, Bartelt N.C., and Sills R.B., Enabling simulations of helium bubble nucleation and growth: A strategy for interatomic potentials, Phys. Rev. B, Vol. 103, 014108 (2021) [link].
  3. Akhondzadeh Sh., Bertin N., Sills R.B., and Cai W., Slip-Free Multiplication and Complexity of Dislocation Networks in FCC Metals, Mater. Theory, Vol. 5, No. 2 (2021) [link].


  1. Chu K., Foster M.E., Sills R.B., Zhou X., Zhu T., and McDowell D., Temperature and composition dependent screw dislocation mobility in austenitic stainless steels from large-scale molecular dynamics, npj Computational Materials, 6 179 (2020) [link].
  2. Péterffy G., Ispánovity P.D., Foster M.E., Zhou X.W., and Sills R.B., Length Scales and Scale-Free Dynamics of Dislocations in Dense Solid Solutions, Mater. Theory, 4 1-25 (2020) [link].
  3. Akhondzadeh Sh., Sills R.B., Bertin N., and Cai W., Dislocation Density-Based Plasticity Model from Massive Discrete Dislocations Dynamics Database, J. Mech. Phys. Sol., Vol. 145, 104152 (2020) [link].
  4. Sills R. B., Foster M. E. and Zhou X., Line-Length-Dependent Dislocation Mobilities in an FCC Stainless Steel Alloy, Int. J. Plast., Vol. 135, 102791 (2020). [link]
  5. Spataru C. D., Chu K., Sills R. B., and Zhou X., Molecular Statics Analyses of Thermodynamics and Kinetics of Hydrogen Cottrell Atmosphere Formation Around Edge Dislocations in Aluminum, JOM, Vol. 72, No. 8 (2020). [link]
  6. Epperly E. N. and Sills R. B.Comparison of Continuum and Cross-Core Theories of Dynamic Strain Aging, J. Mech. Phys. Sol., 141 103944 (2020). [link]
  7. Epperly E. N. and Sills R. B.Transient Solute Drag and Strain Aging of Dislocations, Acta. Mater., 193 182-190 (2020). [link]
  8. Taylor C. A., Sugar J. D., Robinson D. B., Bartelt N. C., Sills R. B., and Hattar K., Using In Situ TEM Helium Implantation and Annealing to Study Cavity Nucleation and Growth, JOM (2020). [link]
  9. Sills R. B. and Boyce B. L. Void Growth by Dislocation Adsorption, Mater. Res. Lett., 8 103-109 (2020). [link]
  10. Bertin N., Sills R.B., and Cai W. Frontiers in the Simulations of Dislocations, Annual Rev. Mater. Research, Vol. 50, p. 437-464 (Invited article) (2020). [link]
  11. Sills R.B., Bertin N., Bulatov V.V., and Cai W. Multiscale Modeling of Plasticity, Modelling Simul. Mater. Sci. Eng., 28 043001 (Invited contribution for Roadmap on Multiscale Materials Modeling) (2020). [link]
  12. Noell P.J., Sills R.B., and Boyce B.L. Suppression of Void Nucleation in High-Purity Aluminum via Dynamic Recrystallization, Metall. Mater. Trans. A, 51 154-166 (2020). [link]

2019 and earlier

  1. Sills R.B., Bertin N., Aghaei A., and Cai W. Dislocation Networks and the Microstructural Origin of Strain Hardening, Phys. Rev. Lett, 121 085501 (2018). [link]
  2. Sills R.B. and Cai. W. Free Energy Change of a Dislocation Due to a Cottrell Atmosphere, Phil. Mag., 98 1491-1510 (2018). [link]
  3. Akhondzadeh S., Sills R.B., Papanikolaou S., Van der Giessen E., and Cai W. Geometrically Projected Discrete Dislocation Dynamics, Simul. Mater. Sci. Eng., 26 065011 (2018). [link]
  4. Zhou X.W., Foster M.E. and Sills R.B. An Fe-Ni-Cr Embedded Atom Method Potential for Austenitic and Ferritic Systems, Comp. Chem., 39 2420-2431 (2018). [link]
  5. Zhou X.W., Sills R.B., Ward D.K., and Karnesky R.A. Atomistic Calculations of Dislocation Core Energy in Aluminum, Rev. B, 95 054112 (2017). [link]
  6. Sills R.B., Aghaei, A., and Cai W. Advanced Time Integration Algorithms for Dislocation Dynamics Simulations of Work Hardening. Simul. Mater. Sci. Eng. 24 045019 (2016). [link]
  7. Sills R.B. and Cai W. Solute Drag on Perfect and Extended Dislocations. Phil. Mag. 96 895-921 (2016). [link]
  8. Sun Y., Sills R.B., Hu X., Seh Z.W., Xiao X., Xu H., Luo W., Jin H., Xin Y., Li T., Zhang Z., Zhou J., Cai W., Huang Y., and Cui Y. A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices. Nano letters. 15 3899-3906 (2015). [link]
  9. Sills R.B. and Thouless M.D. Cohesive-Length Scales for Damage and Toughening Mechanisms. Int. J. Sol. Struct. 55 32-43 (2015). [link]
  10. Cai W., Sills R.B., Barnett D.M., and Nix W.D. Modeling a Distribution of Point Defects as Misfitting Inclusions in Stressed Solids. J. Mech. Phys. Sol. 66 154-171 (2014). [link]
  11. Sills R.B. and and Cai W. Efficient Time Integration in Dislocation Dynamics. Modell. Simul. Mat. Sci. Eng. 22 (2014). [link]
  12. Sills R.B. and Thouless M.D. The Effect of Cohesive-Law Parameters on Mixed-Mode Fracture, Engineering Fracture Mechanics, 109 353-368 (2013). [link]
Book Chapters
  1. Sills R.B. and Aubry S. Line Dislocation Dynamics Simulations with Complex Physics, In: Handbook of Materials Modeling, Eds.: Andreoni W. and Yip S. Springer, Cham (2018). [link]
  2. Sills R.B., Kuykendall W.P., Aghaei A., and Cai W. Fundamentals of Dislocation Dynamics Simulations. In: Multiscale Materials Modeling for Nanomechanics, Eds.: Weinberger C.R. and Tucker G.J. Springer, Switzerland (2016). [link]