
 1

ObDiTo Manual

Ryan Sills*, Rutgers University, January 2022

*ryan.sills@rutgers.edu, please feel free to contact me with any questions or to report issues!

1. Purpose and Scope

The purpose of this manual is to detail how to use the Object-based Dislocation Tomography

(ObDiTo) code, which was written to perform three-dimensional tomographic reconstructions

from tilt series images obtained in the transmission electron microscope (TEM). For information

on the algorithm and operating principles of ObDiTo, see:

R. B. Sills and D. L. Medlin, Semi-automated, Object-Based Tomography of Dislocation

Structures, In Preparation, 2022.

When using ObDiTo, please reference this publication.

ObDiTo has three core code modules, which correlate with the three steps of dislocation object-

based reconstruction:

extract_lines – takes a TEM image as input and extracts discrete dislocation lines with

graphical input from users

match_objects – takes sets of dislocation lines previously extracted from TEM images and

provides a graphical tool for users to “match” the same dislocation “object”

across images

reconstruct_3dlines – takes sets of matched objects and performs a 3D reconstruction of

the dislocation network formed by the objects

The final output of reconstruct_3dlines is a data structure which describes the 3D

arrangement of the dislocation lines in terms of nodes and line segments. This data structure is

comprised of a N x 3 rn array (N is the number of nodes) with the ith row as the [x, y, z]

coordinates of node with ID i, and a M x 2 links array (M is the number of line segments) with

the jth row as the node IDs to which the jth segment is connected. This is the same data structure

used by the ddlab discrete dislocation dynamics code written in MATLAB by Wei Cai1.

In addition to the core code modules, there are several auxiliary modules used to analyze,

manipulate, and plot the dislocation objects.

In the remainder of this manual, we discuss how to use the three core modules using the example

published in the manuscript above. The microscopy images from the manuscript is available with

the ObDiTo source in the test_data/medlin304L-testing folder, so users can run the

1 Available at http://micro.stanford.edu/~caiwei/Forum/2005-12-05-DDLab/.

 2

analysis themselves to get a feel for how to use it. The results can be compared with the published

results provided in the test_data/medlin304L-archival folder.

2. Necessary Resources

ObDiTo is written in MATLAB and requires the Image Processing Toolbox. It was written and

tested using MATLAB 2020a and 2020b on a MacBook. It has not been tested on other platforms

or other versions of MATLAB.

3. How to Use ObDiTo

3.1. Line Extraction

The extract_lines function has the following syntax:

extract_lines(path,fileName,mode,lseg,lmin)

with the arguments

• path = folder path to the TEM image (string)

• fileName = name of the TEM image with extension (string)

• mode = string to specify how to run the function, valid choices are: 'new' - use this

option when loading an image for the first time, and 'mod' - use this option when an

image has already been analyzed once and the objective is to manually modify the line

structure

• lseg = segment size to use in units of pixels (integer)

• lmin = minimum object length in units of pixels, any objects with length less than lmin

are removed (integer)

An example for how to call this function is:

extract_lines('test_data/medlin304L-testing','frame01.tif',...

 'new',10,15)

Upon calling the function, the original image is displayed in Figure 1.

 3

The code then attempts to automatically extract dislocation lines using thresholding and thinning.

The thresholded image is displayed in Figure 2 and the resulting thinned image in Figure 3

superposed over the original image.

Clearly the automatic extraction process is imperfect, with incompletely extracted lines and

misidentified lines. The user is next able to “clean up” the lines manually using an editing tool in

Figure 3. The following prompt is given in the command window:

Enter l to draw a line, e to erase, u to undo, and q to quit:

 4

To draw a missing line or component of a line, type l in the command window and hit enter. You

can then draw a line in Figure 3 by clicking and dragging on the screen. After releasing your

mouse, the new line is automatically added, as shown below. The new line is visible on the right

image.

Note that the newly sketched line is slightly thicker than the other thinned lines. These will be

thinned again at the end. You need to ensure that sketched lines are contiguous with pre-existing

lines if they belong to the same dislocation (no pixel holes or gaps).

If instead you wish to erase an incorrectly identified line, type e in the command window and

press enter. You can then select any lines to erase by encircling them in Figure 3. After releasing

the mouse, anything that was encircled while clicking and dragging is erased, as shown below.

 5

If you decide after making an edit that you are unhappy with the resulting changes, you can undo

it by typing u in the command window and pressing enter. After you are satisfied with your final

edits or need to end your editing session and plan to continue later, type q and press enter.

After quitting, another thinning pass is performed and the pixel skeleton is converted to the nodal-

segment representation plotted in Figure 4, as shown below.

After quitting, two files will have been saved in the path specified in extract_lines:

fileName_lines – a binary image with the same extension as the original image (e.g.,

.tif in the example above), the contents of which is the skeleton obtained after

manual editting

fileName.mat – a .mat file which stores the data structure for the dislocation objects in

the form of rn and links arrays (see Section 1 for description, note that rn only

contains [x,y] coordinates at this stage).

If you decide to continue editing your line structure, you can run the code using the 'mod' mode,

e.g.,

extract_lines('test_data/medlin304L-testing','frame01.tif',...

 'mod',10,15)

The code will automatically load the relevant fileName_lines file (if it exists) and you can

continue editing. This process can be repeated as many times as is necessary, however, it does

seem that the thinning operation can degrade the quality of existing thinned lines if applied over

and over again (e.g., 10+ times). Hence, it is advised that the same file is not edited for times than

necessary.

 6

3.2. Object Matching

After extracting lines from more than one image, dislocation “objects” must be defined and

matched across the images. We define dislocation objects as portions of dislocation lines which

terminate at physical nodes, e.g., nodes that connect to more or less than two segments. In order

to identify objects, the user must select pairs of physical nodes. However, when dislocations cross

above and below each other in the TEM foil, they appear to intersect and form physical nodes, but

in reality do not. We call these “fake physical nodes.” See the figure below from Sills and Medlin

(2022).

Such fake physical nodes cannot be used to define dislocation objects. Unfortunately, the only way

that fake physical nodes can be identified at present is by careful inspection: a true physical node

exists in all images and does not move along the tilt axis as the sample is tilted. Prior to matching

dislocation objects, the user must identify fake physical nodes to ignore.

To perform object matching, the match_objects function has the following syntax:

match_objects(path,basename,files,mode)

with arguments

• path = folder path to the TEM image files (string)

• baseName = name for the image series, to be appended with "matches" and used for

saving output (string)

• files = cell array containing a list of TEM image file names (no extension) (cell

array of strings)

 7

• mode = string specify how to run the function, valid choices are: 'new' - use this

option when matching objects for the first time, and 'mod' - use this option when

objects have already been matched for this dataset and you wish to continue matching

An example for how to call this function is:

match_objects('test_data/medlin304L-testing',...

 'medlin304_13456',{'frame01','frame03',...

 'frame04','frame05','frame06'},'new');

This assumes that you have already extracted lines from TEM images frame01, frame03,

frame04, frame05, and frame06. To test the function you may copy the frame*.mat files

from the test_data/medlin304L-archival folder into the

test_data/medlin304L-testing folder rather than extracting lines from all images

yourself. Note that you may also use fewer images, but must use at least two.

Upon calling the function, Figure 10 appears displaying all extracted dislocation lines:

Potential (but possibly fake) physical nodes are displayed as blue. The command window prompt

then states:

Press enter to continue selecting points, s to save, u to undo,

or enter q to quit:

 8

The goal is to match the same dislocation object across several (ideally all) of the images. This is

done by first selecting one physical node terminating that object in each image (moving from left

to right, starting at the top), followed by the other physical node terminating that object. After

pressing enter (with no other keystrokes) the command window displays:

Select the same physical node 1 on each image...

followed by the same physical node 2 on each image...

if there is no corresponding node in an image click out of the

image

To select physical nodes simply click near the node (the nearest blue node to the click is chosen).

If you are skipping an image for a particular object, then click out of the image when it is that

image’s turn. After clicking as appropriate, the selected physical nodes are colored white:

In the example above, the “C-shaped” dislocation (top left) was not fully visible in images 3 and

5, and so was skipped by clicking out of the images.

Now continue this process for all dislocation objects of interest. If you make a mistake you can

undo the last matching operation by entering u when prompted. You can also save at any point by

entering s when prompted. To quit, enter q when prompted. After quitting, just the dislocation

segments associate with selected dislocation objects are extracted from each image and displayed.

These pared down datasets are then saved along with an array storing the object match information

in the basenamematches.mat file in the specified path for use during the final

reconstruction.

 9

3.3. 3D Reconstruction

With dislocation objects matched, you are now ready to estimate the z height of each node. To

perform the reconstruction, the reconstruct_3dlines function has the following syntax:

reconstruct_3dlines(path,basename,angles,ref,scale,do_plot)

with arguments

• path = folder path to the line and alignment data (string)

• basename = same basename as used in match_objects (string)

• angles = tilt angle for each of the images used with match_objects in degrees

(array of doubles)

• ref = file number to use as a reference when performing the reconstruction (integer)

• scale = image scale in nm per pixel (double)

• do_plot = binary flag (0 or 1) indicating whether to plot the results

An example for how to call this function is:

[rn,links] = reconstruct_3dlines(...

 'test_data/medlin304L-testing',...

 'medlin304_13456',[-11.87 -2.38 2.38 7.11...

 11.87],2,0.409,1);

Note that it is necessary to have all of the image .mat files and the matches .mat file from the

test_data/medlin304L-archival folder in the 'test_data/medlin304L-

testing folder in order to run this command.

After calling the function, no user input is necessary. If do_plot = 1, then results are plotted

showing the recentering of the datasets (Figure 20), determination of the tilt axis orientation

(Figure 21), determination of the z height for each node (Figure 22), and the final 3D

reconstruction (Figure 23).

If users wish to manually plot and view the final reconstruction, they can utilize the

plotnodes function as

plotnodes(rn,links,color)

where color is a MATLAB color string (e.g., 'r' for red) chosen by the user.

Acknowledgements

 10

ObDiTo was developed with support from Sandia National Laboratories under the Laboratory

Directed Research and Development (LDRD) program.

